A Khovanov-theoretic invariant of bridge trisections

Adam Saltz
April 21, 2018
Northeastern University
AMS Section Meeting
Khovanov homology is a TQFT:

- Links \rightarrow vector spaces/modules
- Link cobordisms \rightarrow linear maps

$\text{Kh}(U) \rightarrow \text{Kh}(U)$ is an isotopy invariant.
"Khovanov homology is a TQFT:"

- Links \rightarrow vector spaces/modules
- Link cobordisms \rightarrow linear maps

$\text{Kh}(U) \rightarrow \text{Kh}(U)$ is an isotopy invariant.

Theorem (Rasmussen; Tanaka)

This map can only tell you if Σ has genus one or not.
<table>
<thead>
<tr>
<th>Definition (Meier, Zupan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ((b, c))-bridge trisection diagram is a trio of trivial tangles ((t_1, t_2, t_3)) on (2b) points so that (t_i \bar{t}_j) is a (c)-component unlink.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Meier, Zupan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge trisection diagrams represent bridge-trisected surfaces in (S^4).</td>
</tr>
<tr>
<td>Two diagrams represent the same isotopy class of surface if and only if they are related by a sequence of special moves.</td>
</tr>
</tbody>
</table>
From chain complexes to algebras.

Cobordism $t_1 \tilde{t}_2 \coprod t_2 \tilde{t}_3 \rightarrow t_1 \tilde{t}_3$ induces a map

$$m : \text{CKh}(t_1 \tilde{t}_2) \otimes \text{CKh}(t_2 \tilde{t}_3) \rightarrow \text{CKh}(t_1 \tilde{t}_3).$$
From chain complexes to algebras.
Cobordism $t_1 \bar{t}_2 \coprod t_2 \bar{t}_3 \to t_1 \bar{t}_3$ induces a map

$$m : \text{CKh}(t_1 \bar{t}_2) \otimes \text{CKh}(t_2 \bar{t}_3) \to \text{CKh}(t_1 \bar{t}_3).$$
From chain complexes to algebras.

Cobordism \(t_1 \bar{t}_2 \coprod t_2 \bar{t}_3 \rightarrow t_1 \bar{t}_3 \) induces a map

\[
m : \text{CKh}(t_1 \bar{t}_2) \otimes \text{CKh}(t_2 \bar{t}_3) \rightarrow \text{CKh}(t_1 \bar{t}_3).\]
From chain complexes to algebras.

Cobordism $t_1 \bar{t}_2 \coprod t_2 \bar{t}_3 \rightarrow t_1 \bar{t}_3$ induces a map

$$m : \text{CKh}(t_1 \bar{t}_2) \otimes \text{CKh}(t_2 \bar{t}_3) \rightarrow \text{CKh}(t_1 \bar{t}_3).$$

In general, $m : \text{CKh}(t_i \bar{t}_j) \otimes \text{CKh}(t_j \bar{t}_k) \rightarrow \text{CKh}(t_i \bar{t}_k)$.
The invariant: round 1

\[t = (t_1, t_2, t_3) \] a bridge trisection of \(\Sigma \).

Define \(A(t) = \bigoplus_{i,j} \text{CKh}(t_i \bar{t}_j) \).

Proposition (Khovanov?)

\((A(t), \partial_{\text{CKh}}, m)\) is an (associative) differential graded algebra. Its chain homotopy type is an invariant of the trisection of \(\Sigma \).
The invariant: round 1

t = (t_1, t_2, t_3) a bridge trisection of \(\Sigma \).

Define \(A(t) = \bigoplus_{i,j} \text{CKh}(t_i \bar{t}_j) \).

Proposition (Khovanov?)

\((A(t), \partial_{\text{CKh}}, m)\) is an (associative) differential graded algebra. Its chain homotopy type is an invariant of the trisection of \(\Sigma \).

Proposition (S.)

For connected \(\Sigma \), the algebra \((H(A(t)), m_\ast)\) is determined by \(b \) and \(c \), and therefore by \(g(\Sigma) \).
Link L with diagram \mathcal{D}

Filtered chain complex $(\text{CSz}(\mathcal{D}), \partial)$ where

- $\text{CSz}(\mathcal{D}) = \text{CKh}(\mathcal{D})$.
- $\partial = \partial_{\text{CKh}} + \partial_2 + \partial_3 + \cdots$.

Theorem (Szabó)

The homology $\text{Sz}(L) = H(\text{CSz}(\mathcal{D}), \partial)$ is an invariant of L.
The map ∂_i is a sum of maps along i-dimensional faces of the cube of resolutions.
Szabó assigns maps to these pictures.

Conjecture (Seed, Szabó)

\[Sz(L) \cong \hat{HF}(\Sigma(-L)) \otimes \hat{HF}(S^1 \times S^2). \]
The invariant: round 2

\(\mathbf{t} = (t_1, t_2, t_3) \) a bridge trisection diagram \(\Sigma \) with each \(t \) is a braid half-plat closure.

Theorem (S.)

Let \(\mathcal{A}(\mathbf{t}) = \bigoplus_{i,j} CSz(t_i \bar{t}_j) \).

- \(\mathcal{A}(\mathbf{t}) \) is an \(A_\infty \)-algebra.
- The \(A_\infty \)-chain homotopy type of this algebra is an invariant of the trisection of the surface.
- The binary multiplication \(m_2 \) is still Khovanov’s map, so \(H(\mathcal{A}(\mathbf{t})) \) is still determined by \(g(\Sigma) \).

In principle, computable by computer – no holomorphic disks, PDEs.
The construction uses hyperboxes of chain complexes due to Manolescu and Ozsváth (also Baldwin and Seed).
Construction uses hyperboxes of chain complexes due to Manolescu and Ozsváth (also Baldwin and Seed).

Higher configurations represent homotopies between compositions of lower compositions.

Goal: arrange all of these homotopies into one structure.
The construction: a hyperbox

Khovanov, Szabó

x-axis: handles in column two

y-axis: handles in column one
Apply compression:
THE PROOF

Construct maps of (systems of) hyperboxes for tri-plane moves. Show that they induce maps of A_∞-algebras. Uses functoriality of Szabó’s homology theory. (S. ’17)
The simplest example

If \(t = (t_1, t_2, t_3) \) is the \(b = 1 \) trisection of \(S^2 \), then \(A(t) \) has no higher multiplications.

The next simplest example

If \(t' \) is a stabilization of \(t \), then \(A(t) \) has higher multiplications.

Stabilization will always increase rank.
Let t' be a stabilization of t.

😍 Construct maps $A(t) \rightarrow A(t')$.
Let t' be a stabilization of t.

 качальн Construct maps $A(t) \to A(t')$.
Let t' be a stabilization of t. Then:

- Construct maps $\mathcal{A}(t) \to \mathcal{A}(t')$.
- $H(\mathcal{A}(t))$:
 - has associative algebra structure determined by b, c
 - has A_∞-structure equivalent to $\mathcal{A}(t)$.

Isotopy class invariants?
Let t' be a stabilization of t.

.construct maps $A(t) \to A(t')$.

• has associative algebra structure determined by b, c
• has A_∞-structure equivalent to $A(t)$.

Compare to Heegaard Floer constructions.
Come to Bill Olsen’s talk!
Come to Bill Olsen’s talk!

Conjecture (Seed, Szabó)

\[Sz(L) \cong \hat{HF}(\Sigma(-L)) \otimes \hat{HF}(S^1 \times S^2). \]

Replace \(CSz \) with \(\hat{HF} \)

Trisection diagram \(\approx \) Heegaard multidiagrams. Goal: invariant from counting holomorphic polygons.

Bridge trisection diagram \(\rightarrow \) trisection diagram for branched double cover of \(S^4 \) along \(\Sigma - \mathcal{A}(t) \) contains the four-manifold invariant?
Connections to Heegaard Floer invariants

Come to Bill Olsen’s talk!

Conjecture (Seed, Szabó)

\[Sz(L) \cong \hat{HF}(\Sigma(-L)) \otimes \hat{HF}(S^1 \times S^2). \]

Replace \(CSz \) with \(\hat{HF} \)

Trisection diagram \(\approx \) Heegaard multidiagrams. Goal: invariant from counting holomorphic polygons.

Bridge trisection diagram \(\rightarrow \) trisection diagram for branched double cover of \(S^4 \) along \(\Sigma - \mathcal{A}(t) \) contains the four-manifold invariant?

Thanks!